How to print the statistical summary of a dataset using Python pandas?

by | Nov 12, 2022 | AI, Machine Learning and Deep Learning, Machine Learning Using Python, Python Pandas

In Python, we can use the pandas.DataFrame.describe() function to get the statistical summary of data in a dataset. In this article, we will use pandas to read from a CSV file and then, print the statistical summary of the dataset using the pandas.DataFrame.describe() function.

We can use the following Python code for that purpose:

import pandas

data = pandas.read_csv("iris.csv")
print(data.describe(include="all"))

Here, we first import the pandas module. Then, we read the CSV file named “iris.csv”. The CSV file contains various information, such as the sepal length, sepal width, petal length, petal width, and species of flowers. Out of these five columns, the first four columns contain floating point values and the last column contains strings.

We want to print the statistical summary of all the columns including the categorical columns. So, we pass the argument include=”all” in the pandas.DataFrame.describe() function.

The output of the above program will be:

        sepal_length  sepal_width  petal_length  petal_width species
count     150.000000   150.000000    150.000000   150.000000     150
unique           NaN          NaN           NaN          NaN       3
top              NaN          NaN           NaN          NaN  setosa
freq             NaN          NaN           NaN          NaN      50
mean        5.843333     3.057333      3.758000     1.199333     NaN
std         0.828066     0.435866      1.765298     0.762238     NaN
min         4.300000     2.000000      1.000000     0.100000     NaN
25%         5.100000     2.800000      1.600000     0.300000     NaN
50%         5.800000     3.000000      4.350000     1.300000     NaN
75%         6.400000     3.300000      5.100000     1.800000     NaN
max         7.900000     4.400000      6.900000     2.500000     NaN

Here, count specifies the number of rows. Unique specifies the number of unique values in a categorical column. It contains NaN …

Facebooktwitterredditpinterestlinkedinmail

Calculate the pseudoinverse of a matrix using Python

What is the pseudoinverse of a matrix? We know that if A is a square matrix with full rank, then A-1 is said to be the inverse of A if the following condition holds: $latex AA^{-1}=A^{-1}A=I $ The pseudoinverse or the Moore-Penrose inverse of a matrix is a...

Cholesky decomposition using Python

What is Cholesky decomposition? A square matrix A is said to have Cholesky decomposition if it can be written as a product of a lower triangular matrix and its conjugate transpose. $latex A=LL^{*} $ If all the entries of A are real numbers, then the conjugate...

Tensor Hadamard Product using Python

In one of our previous articles, we already discussed what the Hadamard product in linear algebra is. We discussed that if A and B are two matrices of size mxn, then the Hadamard product of A and B is another mxn matrix C such that: $latex H_{i,j}=A_{i,j} \times...

Perform tensor addition and subtraction using Python

We can use numpy nd-array to create a tensor in Python. We can use the following Python code to perform tensor addition and subtraction. import numpy A = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) B = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) C =...

How to create a tensor using Python?

What is a tensor? A tensor is a generalization of vectors and matrices. It is easily understood as a multidimensional array. For example, in machine learning, we can organize data in an m-way array and refer it as a data tensor. Data related to images, sounds, movies,...

How to combine NumPy arrays using horizontal stack?

We can use the hstack() function from the numpy module to combine two or more NumPy arrays horizontally. For example, we can use the following Python code to combine three NumPy arrays horizontally. import numpy A = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B =...

How to combine NumPy arrays using vertical stack?

Let’s say we have two or more NumPy arrays. We can combine these NumPy arrays vertically using the vstack() function from the numpy module. For example, we can use the following Python code to combine three NumPy arrays vertically. import numpy A = numpy.array([[1, 2,...

Singular Value Decomposition (SVD) using Python

What is Singular Value Decomposition (SVD)? Let A be an mxn rectangular matrix. Using Singular Value Decomposition (SVD), we can decompose the matrix A in the following way: $latex A_{m \times n}=U_{m \times m}S_{m \times n}V_{n \times n}^T $ Here, U is an mxm matrix....

Eigen decomposition of a square matrix using Python

Let A be a square matrix. Let’s say A has k eigenvalues λ1, λ2, ... λk. And the corresponding eigenvectors are X1, X2, ... Xk. $latex X_1=\begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ ... \\ x_{k1} \end{bmatrix} \\ X_2=\begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ ......

How to calculate eigenvalues and eigenvectors using Python?

In our previous article, we discussed what eigen values and eigenvectors of a square matrix are and how we can calculate the eigenvalues and eigenvectors of a square matrix mathematically. We discussed that if A is a square matrix, then $latex (A- \lambda I) \vec{u}=0...

Amrita Mitra

Author

Ms. Amrita Mitra is an author, who has authored the books “Cryptography And Public Key Infrastructure“, “Web Application Vulnerabilities And Prevention“, “A Guide To Cyber Security” and “Phishing: Detection, Analysis And Prevention“. She is also the founder of Asigosec Technologies, the company that owns The Security Buddy.

0 Comments

Submit a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Not a premium member yet?

Please follow the link below to buy The Security Buddy Premium Membership.

Featured Posts

Translate »