If we want to safeguard our wireless networks, it is always good to use an up-to-date encryption algorithm for routers. And that is why we use WEP, WPA, and WPA2. Let’s try to understand the difference between WEP, WPA, and WPA2, how they work, and which one to choose.

What is WEP?

WEP stands for Wired Equivalent Privacy. WEP is a popular security algorithm for wireless networks. It was designed to provide data confidentiality for wireless networks. Earlier, it was widely used and was the first security choice given to Wi-Fi users. But, later it was superseded by WPA and WPA2.

WEP uses a 64-bit, 128-bit, 152-bit, or 256-bit WEP key. It uses the stream cipher RC4 for confidentiality. The WEP key is first concatenated with the Initialization Vector (IV), and then the whole keystream is XOR’ed with the plaintext to get the encrypted value. The diagram looks like this:

WEP

The length of the Initialization Vector usually is 24 bits. This means that for a 64-bit WEP, the WEP key length is 40-bit. For 128-bit WEP, the key length is 104-bit. And for 256-bit WEP, the key length is 232-bit.

For 64-bit WEP, a user enters the key as 5 ASCII characters. The key is converted into a 5 x 8 = 40-bit WEP key. Then, the key is concatenated with a 24-bit Initialization Vector (IV). The 64-bit keystream is then XOR’ed with the plaintext to get the encrypted value.

Similarly, for 128-bit WEP, a user enters 13 ASCII characters, and for 256-bit WEP, the user enters 29 ASCII …

Facebooktwitterredditpinterestlinkedinmail

Calculate the pseudoinverse of a matrix using Python

What is the pseudoinverse of a matrix? We know that if A is a square matrix with full rank, then A-1 is said to be the inverse of A if the following condition holds: $latex AA^{-1}=A^{-1}A=I $ The pseudoinverse or the Moore-Penrose inverse of a matrix is a...

Cholesky decomposition using Python

What is Cholesky decomposition? A square matrix A is said to have Cholesky decomposition if it can be written as a product of a lower triangular matrix and its conjugate transpose. $latex A=LL^{*} $ If all the entries of A are real numbers, then the conjugate...

Tensor Hadamard Product using Python

In one of our previous articles, we already discussed what the Hadamard product in linear algebra is. We discussed that if A and B are two matrices of size mxn, then the Hadamard product of A and B is another mxn matrix C such that: $latex H_{i,j}=A_{i,j} \times...

Perform tensor addition and subtraction using Python

We can use numpy nd-array to create a tensor in Python. We can use the following Python code to perform tensor addition and subtraction. import numpy A = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) B = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) C =...

How to create a tensor using Python?

What is a tensor? A tensor is a generalization of vectors and matrices. It is easily understood as a multidimensional array. For example, in machine learning, we can organize data in an m-way array and refer it as a data tensor. Data related to images, sounds, movies,...

How to combine NumPy arrays using horizontal stack?

We can use the hstack() function from the numpy module to combine two or more NumPy arrays horizontally. For example, we can use the following Python code to combine three NumPy arrays horizontally. import numpy A = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B =...

How to combine NumPy arrays using vertical stack?

Let’s say we have two or more NumPy arrays. We can combine these NumPy arrays vertically using the vstack() function from the numpy module. For example, we can use the following Python code to combine three NumPy arrays vertically. import numpy A = numpy.array([[1, 2,...

Singular Value Decomposition (SVD) using Python

What is Singular Value Decomposition (SVD)? Let A be an mxn rectangular matrix. Using Singular Value Decomposition (SVD), we can decompose the matrix A in the following way: $latex A_{m \times n}=U_{m \times m}S_{m \times n}V_{n \times n}^T $ Here, U is an mxm matrix....

Eigen decomposition of a square matrix using Python

Let A be a square matrix. Let’s say A has k eigenvalues λ1, λ2, ... λk. And the corresponding eigenvectors are X1, X2, ... Xk. $latex X_1=\begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ ... \\ x_{k1} \end{bmatrix} \\ X_2=\begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ ......

How to calculate eigenvalues and eigenvectors using Python?

In our previous article, we discussed what eigen values and eigenvectors of a square matrix are and how we can calculate the eigenvalues and eigenvectors of a square matrix mathematically. We discussed that if A is a square matrix, then $latex (A- \lambda I) \vec{u}=0...

Amrita Mitra

Author

Ms. Amrita Mitra is an author, who has authored the books “Cryptography And Public Key Infrastructure“, “Web Application Vulnerabilities And Prevention“, “A Guide To Cyber Security” and “Phishing: Detection, Analysis And Prevention“. She is also the founder of Asigosec Technologies, the company that owns The Security Buddy.

0 Comments

Submit a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Not a premium member yet?

Please follow the link below to buy The Security Buddy Premium Membership.

Featured Posts

Translate »