How to check whether a matrix is an orthogonal matrix?

by | Oct 3, 2023 | Featured, Linear Algebra

What is an orthogonal matrix?

An orthogonal matrix is a square matrix of real numbers such that if we take any two columns or any two rows, the two rows or the two columns will be orthonormal. In other words, if we take any two columns and perform a dot product of the column vectors, the dot product will be zero and the column vectors have unit length. The same is true for any two rows of an orthogonal matrix.

So, in one way, we can say that if Q is an orthogonal matrix, then the following holds true:

QQ^T=Q^TQ=I

Here, QT is the transpose of the square matrix Q and I is the identity matrix of the same dimension.

So, in other words, for an orthogonal matrix Q, the transpose of the matrix is equal to its inverse.

Q^T=Q^{-1}

The matrices given below are some examples of orthogonal matrices.

I=\begin{bmatrix}  1 & 0 \\  0 & 1  \end{bmatrix} \\  B=\begin{bmatrix}  1 & 0 \\  0 & -1  \end{bmatrix}

How to check whether a matrix is an orthogonal matrix using Python?

We can use the following Python code to check whether a matrix is orthogonal.

import numpy

A = numpy.array([[1, 0], [0, -1]])
A_transpose = A.transpose()
A_inverse = numpy.linalg.inv(A)

print("The matrix A: \n", A)
if numpy.allclose(A_transpose, A_inverse):
    print("The matrix A is orthogonal")
else:
    print("The matrix A is not orthogonal")

Here, A is a square matrix of real numbers. We are calculating the transpose and inverse of the matrix using transpose() and inv() functions, respectively. After that, we are using the numpy.allclose() function to check whether these two matrices are equal.

The output of the given program will be:

The matrix A: 
 [[ 1  0]
 [ 0 -1]]
The matrix A is orthogonal
Facebooktwitterredditpinterestlinkedinmail

Calculate the pseudoinverse of a matrix using Python

What is the pseudoinverse of a matrix? We know that if A is a square matrix with full rank, then A-1 is said to be the inverse of A if the following condition holds: $latex AA^{-1}=A^{-1}A=I $ The pseudoinverse or the Moore-Penrose inverse of a matrix is a...

Cholesky decomposition using Python

What is Cholesky decomposition? A square matrix A is said to have Cholesky decomposition if it can be written as a product of a lower triangular matrix and its conjugate transpose. $latex A=LL^{*} $ If all the entries of A are real numbers, then the conjugate...

Tensor Hadamard Product using Python

In one of our previous articles, we already discussed what the Hadamard product in linear algebra is. We discussed that if A and B are two matrices of size mxn, then the Hadamard product of A and B is another mxn matrix C such that: $latex H_{i,j}=A_{i,j} \times...

Perform tensor addition and subtraction using Python

We can use numpy nd-array to create a tensor in Python. We can use the following Python code to perform tensor addition and subtraction. import numpy A = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) B = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) C =...

How to create a tensor using Python?

What is a tensor? A tensor is a generalization of vectors and matrices. It is easily understood as a multidimensional array. For example, in machine learning, we can organize data in an m-way array and refer it as a data tensor. Data related to images, sounds, movies,...

How to combine NumPy arrays using horizontal stack?

We can use the hstack() function from the numpy module to combine two or more NumPy arrays horizontally. For example, we can use the following Python code to combine three NumPy arrays horizontally. import numpy A = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B =...

How to combine NumPy arrays using vertical stack?

Let’s say we have two or more NumPy arrays. We can combine these NumPy arrays vertically using the vstack() function from the numpy module. For example, we can use the following Python code to combine three NumPy arrays vertically. import numpy A = numpy.array([[1, 2,...

Singular Value Decomposition (SVD) using Python

What is Singular Value Decomposition (SVD)? Let A be an mxn rectangular matrix. Using Singular Value Decomposition (SVD), we can decompose the matrix A in the following way: $latex A_{m \times n}=U_{m \times m}S_{m \times n}V_{n \times n}^T $ Here, U is an mxm matrix....

Eigen decomposition of a square matrix using Python

Let A be a square matrix. Let’s say A has k eigenvalues λ1, λ2, ... λk. And the corresponding eigenvectors are X1, X2, ... Xk. $latex X_1=\begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ ... \\ x_{k1} \end{bmatrix} \\ X_2=\begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ ......

How to calculate eigenvalues and eigenvectors using Python?

In our previous article, we discussed what eigen values and eigenvectors of a square matrix are and how we can calculate the eigenvalues and eigenvectors of a square matrix mathematically. We discussed that if A is a square matrix, then $latex (A- \lambda I) \vec{u}=0...

Amrita Mitra

Author

Ms. Amrita Mitra is an author, who has authored the books “Cryptography And Public Key Infrastructure“, “Web Application Vulnerabilities And Prevention“, “A Guide To Cyber Security” and “Phishing: Detection, Analysis And Prevention“. She is also the founder of Asigosec Technologies, the company that owns The Security Buddy.

0 Comments

Submit a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Not a premium member yet?

Please follow the link below to buy The Security Buddy Premium Membership.

Featured Posts

Translate »