Book: Cryptography And Public Key Infrastructure

Cryptography And Public Key Infrastructure

About The Book

The book Cryptography And Public Key Infrastructure contains eight chapters. The first chapter gives a general introduction to cryptography. The second chapter explains how symmetric key encryption works. It also explains block cipher, stream cipher, and block cipher mode of operation and how various symmetric key encryption algorithms like DES, AES, IDEA, A5/1, RC4, etc. work.

The third chapter explains how public-key encryption and digital signature work. This chapter also explains how various algorithms like DSA, RSA, ElGamal, etc. work.

The fourth chapter explains how cryptographic hashing and various algorithms like MD5, SHA, Bcrypt, HMAC, etc. work.

The fifth chapter explains how various key exchange protocols like the Diffie-Hellman Key Exchange Protocol work.

The sixth chapter explains cryptanalysis and various cryptographic attacks.

The seventh chapter explains what Public Key Infrastructure and Digital Certificates are, why we need them and how they work.

And, the eighth and the last chapter explain how network protocols like TLS, SSH, DNSSEC, SFTP, FTPS, etc. use various cryptographic algorithms to secure our data.

About The Author

Ms. Amrita Mitra is an author and the founder of Asigosec Technologies, the company that owns The Security Buddy. Her areas of interest are cyber security, mathematics, and AI.

How To Buy The Book:

The paperback version of the cryptography book is available on the following Amazon marketplaces and the Kindle version is available on all Amazon marketplaces.

Reviews and Comments:

If you have read the cryptography book and want to give your valuable reviews, comments or feedback, please do so on Amazon or at the link mentioned below:

Contact Us

Calculate the pseudoinverse of a matrix using Python

What is the pseudoinverse of a matrix? We know that if A is a square matrix with full rank, then A-1 is said to be the inverse of A if the following condition holds: $latex AA^{-1}=A^{-1}A=I $ The pseudoinverse or the Moore-Penrose inverse of a matrix is a...

Cholesky decomposition using Python

What is Cholesky decomposition? A square matrix A is said to have Cholesky decomposition if it can be written as a product of a lower triangular matrix and its conjugate transpose. $latex A=LL^{*} $ If all the entries of A are real numbers, then the conjugate...

Tensor Hadamard Product using Python

In one of our previous articles, we already discussed what the Hadamard product in linear algebra is. We discussed that if A and B are two matrices of size mxn, then the Hadamard product of A and B is another mxn matrix C such that: $latex H_{i,j}=A_{i,j} \times...

Perform tensor addition and subtraction using Python

We can use numpy nd-array to create a tensor in Python. We can use the following Python code to perform tensor addition and subtraction. import numpy A = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) B = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) C =...

How to create a tensor using Python?

What is a tensor? A tensor is a generalization of vectors and matrices. It is easily understood as a multidimensional array. For example, in machine learning, we can organize data in an m-way array and refer it as a data tensor. Data related to images, sounds, movies,...

How to combine NumPy arrays using horizontal stack?

We can use the hstack() function from the numpy module to combine two or more NumPy arrays horizontally. For example, we can use the following Python code to combine three NumPy arrays horizontally. import numpy A = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B =...

How to combine NumPy arrays using vertical stack?

Let’s say we have two or more NumPy arrays. We can combine these NumPy arrays vertically using the vstack() function from the numpy module. For example, we can use the following Python code to combine three NumPy arrays vertically. import numpy A = numpy.array([[1, 2,...

Singular Value Decomposition (SVD) using Python

What is Singular Value Decomposition (SVD)? Let A be an mxn rectangular matrix. Using Singular Value Decomposition (SVD), we can decompose the matrix A in the following way: $latex A_{m \times n}=U_{m \times m}S_{m \times n}V_{n \times n}^T $ Here, U is an mxm matrix....

Eigen decomposition of a square matrix using Python

Let A be a square matrix. Let’s say A has k eigenvalues λ1, λ2, ... λk. And the corresponding eigenvectors are X1, X2, ... Xk. $latex X_1=\begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ ... \\ x_{k1} \end{bmatrix} \\ X_2=\begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ ......

How to calculate eigenvalues and eigenvectors using Python?

In our previous article, we discussed what eigen values and eigenvectors of a square matrix are and how we can calculate the eigenvalues and eigenvectors of a square matrix mathematically. We discussed that if A is a square matrix, then $latex (A- \lambda I) \vec{u}=0...

Not a premium member yet?

Please follow the link below to buy The Security Buddy Premium Membership.

Featured Posts

Translate »