All network interfaces that communicate with the network have a unique identifier, and so do Bluetooth devices. Similar to other network devices, attackers can also spoof a Bluetooth device’s MAC address. Let’s understand more about MAC addresses and MAC address spoofing of Bluetooth devices.

What is the Bluetooth MAC address?

The Bluetooth MAC address is a 48-bit unique identifier that uniquely identifies each Bluetooth device. Out of this 48-bit Bluetooth MAC Address, 24 bits are a company identifier, which is unique to the manufacturer. Each vendor registers and obtains MAC prefixes assigned by the IEEE. A vendor may also get more than one MAC prefix, each one used for different products.

The rest of the 24-bit suffix is a company-assigned identifier assigned by the manufacturer. Each vendor assigns a unique 24-bit suffix for each Bluetooth device. Different vendors may assign the same 24-bit suffix for different Bluetooth devices, but that does not create problems as the 48-bit MAC addresses remain different.

How do I get the MAC address of my Bluetooth device?

You can find the MAC Address of your Bluetooth device from the device itself. Go to the settings of your device and select Bluetooth; it will show the MAC Address of the Bluetooth device.

Why is MAC address spoofing done?

MAC address spoofing is changing the device’s MAC Address to some other value. It is done for various reasons. Security experts do this for penetration testing. Attackers spoof MAC addresses mainly to steal sensitive data from the device. They change the MAC address of their device to that of the victim’s device. As a result, data meant for the victim reaches the attackers first. They intercept the data and then forward it to the victim’s device so that it remains undetected.

How is MAC address spoofing done for Bluetooth devices?

Facebooktwitterredditpinterestlinkedinmail

Calculate the pseudoinverse of a matrix using Python

What is the pseudoinverse of a matrix? We know that if A is a square matrix with full rank, then A-1 is said to be the inverse of A if the following condition holds: $latex AA^{-1}=A^{-1}A=I $ The pseudoinverse or the Moore-Penrose inverse of a matrix is a...

Cholesky decomposition using Python

What is Cholesky decomposition? A square matrix A is said to have Cholesky decomposition if it can be written as a product of a lower triangular matrix and its conjugate transpose. $latex A=LL^{*} $ If all the entries of A are real numbers, then the conjugate...

Tensor Hadamard Product using Python

In one of our previous articles, we already discussed what the Hadamard product in linear algebra is. We discussed that if A and B are two matrices of size mxn, then the Hadamard product of A and B is another mxn matrix C such that: $latex H_{i,j}=A_{i,j} \times...

Perform tensor addition and subtraction using Python

We can use numpy nd-array to create a tensor in Python. We can use the following Python code to perform tensor addition and subtraction. import numpy A = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) B = numpy.random.randint(low=1, high=10, size=(3, 3, 3)) C =...

How to create a tensor using Python?

What is a tensor? A tensor is a generalization of vectors and matrices. It is easily understood as a multidimensional array. For example, in machine learning, we can organize data in an m-way array and refer it as a data tensor. Data related to images, sounds, movies,...

How to combine NumPy arrays using horizontal stack?

We can use the hstack() function from the numpy module to combine two or more NumPy arrays horizontally. For example, we can use the following Python code to combine three NumPy arrays horizontally. import numpy A = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) B =...

How to combine NumPy arrays using vertical stack?

Let’s say we have two or more NumPy arrays. We can combine these NumPy arrays vertically using the vstack() function from the numpy module. For example, we can use the following Python code to combine three NumPy arrays vertically. import numpy A = numpy.array([[1, 2,...

Singular Value Decomposition (SVD) using Python

What is Singular Value Decomposition (SVD)? Let A be an mxn rectangular matrix. Using Singular Value Decomposition (SVD), we can decompose the matrix A in the following way: $latex A_{m \times n}=U_{m \times m}S_{m \times n}V_{n \times n}^T $ Here, U is an mxm matrix....

Eigen decomposition of a square matrix using Python

Let A be a square matrix. Let’s say A has k eigenvalues λ1, λ2, ... λk. And the corresponding eigenvectors are X1, X2, ... Xk. $latex X_1=\begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \\ ... \\ x_{k1} \end{bmatrix} \\ X_2=\begin{bmatrix} x_{12} \\ x_{22} \\ x_{32} \\ ......

How to calculate eigenvalues and eigenvectors using Python?

In our previous article, we discussed what eigen values and eigenvectors of a square matrix are and how we can calculate the eigenvalues and eigenvectors of a square matrix mathematically. We discussed that if A is a square matrix, then $latex (A- \lambda I) \vec{u}=0...

Amrita Mitra

Author

Ms. Amrita Mitra is an author, who has authored the books “Cryptography And Public Key Infrastructure“, “Web Application Vulnerabilities And Prevention“, “A Guide To Cyber Security” and “Phishing: Detection, Analysis And Prevention“. She is also the founder of Asigosec Technologies, the company that owns The Security Buddy.

2 Comments

  1. celebov

    Interesting article. I found your website is really educative, thanks!

    • Amrita Mitra

      Thanks @celebov.

Submit a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Not a premium member yet?

Please follow the link below to buy The Security Buddy Premium Membership.

Featured Posts

Translate »